سایر زبان ها

صفحه نخست

سیاسی

بین‌الملل

ورزشی

اجتماعی

اقتصادی

فرهنگی هنری

علمی پزشکی

فیلم و صوت

عکس

استان‌ها

شهروند خبرنگار

وب‌گردی

سایر بخش‌ها

«چت‌جی‌پی‌تی» چه زمانی به حوزه رباتیک وارد می‌شود؟

«چت‌جی‌پی‌تی» در چند سال اخیر پیشرفت‌های چشمگیری داشته، اما حوزه رباتیک یکی از زمینه‌هایی است که هنوز بحث‌های زیادی برای ورود چت‌جی‌پی‌تی به آن وجود دارد.

باشگاه خبرنگاران جوان - با موفقیت هوش مصنوعی مولد، صحبت‌های زیادی درباره امکان آوردن هوش انعطاف‌پذیر مدل‌های زبانی بزرگ به دنیای فیزیکی شکل گرفته است. این نوع هوش که اغلب «هوش مصنوعی مجسم» نامیده می‌شود، یکی از عمیق‌ترین فرصت‌ها در حوزه فناوری و اقتصاد جهانی است.

به نقل از ربات ریپورت، شاید بتوان استدلال کرد که آینده هوش مصنوعی مجسم روشن است، اما مسیر آن بسیار ساده‌تر از مسیر پیش روی هوش مصنوعی در قلمرو کاملا دیجیتالی به نظر می‌رسد. راه رسیدن به «چت‌جی‌پی‌تی» (ChatGPT) برای حوزه رباتیک، چندین سرعت متفاوت دارد و برای تبدیل شدن این ایده به واقعیت، به پیشرفت‌های جدیدی نیاز است. این ایده، پیامد‌هایی را برای بنیان‌گذاران و سرمایه‌گذاران استارت‌آپ‌ها به همراه خواهد داشت که این گزارش آنها را در چند توصیه خلاصه کرده است.

خودکارسازی رباتیک یک امر اجتناب‌ناپذیر است و همه عدم قطعیت در این پرسش نهفته شده که این کار چگونه امکان‌پذیر خواهد شد. شرکت «آمازون» (Amazon) از زمان خرید شرکت «کیوا سیستمز» (Kiva Systems) در سال ۲۰۱۲، بیش از ۷۵۰ هزار ربات را در انبار‌های خود مستقر کرده است. استارت‌آپ‌ها و سرمایه‌گذاران تلاش می‌کنند تا برنامه‌های کاربردی بعدی را به تصویر بکشند که می‌توانند به این سطح از هم‌سویی بین قابلیت‌های رباتیک و نیاز‌های بازار دست یابند.

خط سیر هوش مصنوعی، یک متغیر کلیدی در این فرآیند است و مدل‌های قوی جدید می‌توانند تغییرات مطلق بازی باشند، اما در روند توسعه این مدل‌ها کجا ایستاده‌ایم؟ برای درک بهتر این پرسش باید به صحبت‌های متخصصان باتجربه حوزه رباتیک و افرادی توجه کنیم که در حال توسعه مدل‌های پایه رباتیک هستند.

گامی به سوی هوش مصنوعی مجسم

هدف از پژوهش‌های پیرامون هوش مصنوعی مجسم، ایجاد نوعی هوش رباتیک است که به جای انجام دادن یک کار ویژه، همه‌منظوره باشد و آن قدر انعطاف‌پذیر عمل کند که بدون نیاز به آموزش اختصاصی، از عهده رسیدگی به موارد استفاده جدید یا بسیار پویا برآید. مدل‌های پایه رباتیک همه منظوره، دو وعده را نوید می‌دهند.

۱. آنها موارد استفاده حوزه رباتیک را به طور چشمگیری افزایش می‌دهند.

۲. آنها زمان‌بندی طولانی تجاری‌سازی سیستم‌های رباتیک را کاهش می‌دهند.

هر دو وعده در قلمروی کاملا دیجیتال توسط مدل‌های هوش مصنوعی مانند «چت‌جی‌پی‌تی-۴» (GPT-۴)، «جمینای» (Gemini)، «کلود» (Claude) و «لاما» (Llama) محقق می‌شوند. این مدل‌ها روزنه‌ها را به روی موارد استفاده جدید و بی‌شمار باز کرده‌اند. این در حالی است که مدل‌های کوچک و تک‌منظوره، هوش مصنوعی را در یک مسیر سریع به سمت منسوخ شدن قرار می‌دهند.

مدل‌های همه‌منظوره به یک روش واقعی برای ساختن تقریبا هر چیزی در حوزه هوش مصنوعی تبدیل شده‌اند. شاید بتوان پیش‌بینی کرد که یک مدل جدید شبیه به چت‌جی‌پی‌تی بر توسعه اپلیکیشن‌های رباتیک مسلط خواهد شد. در هر حال، این هدف در کوتاه‌مدت محقق نخواهد شد. در عوض، انتظار می‌رود که روش‌های هوش مصنوعی مولد به تدریج به حوزه رباتیک القا شوند و مدتی با حوزه رباتیک کلاسیک هم‌زیستی داشته باشند.

حوزه رباتیک به لطف روش‌های هوش مصنوعی مولد به طور پیوسته در حال پیشرفت است. استارت‌آپ‌های امروزی از روش‌هایی استفاده می‌کنند که نویدبخش هوش جامع‌تر، انعطاف‌پذیرتر و ورود سریع‌تر به بازار هستند. آنها فقط به یک مدل جهانی به عنوان پایه و اساس برنامه خود متکی نیستند.

مدل‌های همه‌منظوره، پتانسیل تبدیل شدن به پایه توسعه روباتیک را دارند و مدل‌های پژوهشی مانند «RT-X» گوگل نیز آنها را برجسته کرده‌اند.

سه عامل کاهش سرعت در مدل‌های پایه

اولین عامل کاهش سرعت این است که برخلاف فراوانی داده‌های متنی، تصویری و صوتی در مقیاس وب به نظر نمی‌رسد مجموعه‌ای از داده‌های آماده برای آموزش یک مدل پایه پیرامون تعامل با دنیای فیزیکی وجود داشته باشد. مدل‌های ادراکی بسیار قوی شده‌اند، اما اتصال ادراک و فعال‌سازی، چالش‌برانگیز است.

برای دستیابی به مقیاس لازم برای یک مدل پایه واقعی باید سرمایه‌گذاری قابل توجهی روی مکانیسم‌های جمع‌آوری داده و آزمایش درک اثربخشی انواع گوناگون داده‌های آموزشی صورت بگیرد. به عنوان مثال، هنوز مشخص نیست که ویدیو‌های منتشرشده از انسان‌ها در حال انجام دادن وظایف تا چه حد می‌توانند به عملکرد مدل کمک کنند. با ترکیب نبوغ و سرمایه‌گذاری می‌توان داده‌های آموزشی قوی را در مقیاس بزرگ جمع‌آوری کرد.

مسیر محتمل این است که مدل‌های قوی با پیش‌آموزش قابل توجه در چند سال آینده پدیدار خواهند شد، اما برای انجام دادن کار‌های خاص به داده‌های آموزشی تکمیلی بیشتری نیاز دارند. این کار شبیه به تنظیم دقیق مدل‌های زبانی بزرگ است، اما آموزش آن ضروری‌تر خواهد بود.

دومین عامل کاهش سرعت به جبرگرایی و قابلیت اطمینان مربوط می‌شود. بیرون از حوزه رباتیک، اهمیت جبرگرایی با توجه به کاربرد بسیار متفاوت است و موفق‌ترین برنامه‌های کاربردی هوش مصنوعی مولد اولیه آنهایی هستند که جبرگرایی در آنها مهم نیست. جبرگرایی در حوزه رباتیک، حیاتی است. با کنار گذاشتن ایمنی، بازگشت سرمایه رباتیک معمولا به توان عملیاتی بستگی دارد و زمان صرف‌شده برای برطرف کردن خطا به از بین رفتن توان عملیاتی منجر می‌شود.

در حال حاضر تلاش زیادی برای روش‌هایی با هدف کاهش عدم قطعیت مدل‌های هوش مصنوعی مولد به طور گسترده - نه فقط در حوزه رباتیک - انجام می‌شود. بنابراین، می‌توان گفت که این مشکل حل خواهد شد، اما این قطعا در یک لحظه نخواهد بود. این استدلالی برای هم‌زیستی مدل‌های قطعی و غیر قطعی است.

سومین عامل کاهش سرعت مدل‌های پایه رباتیک این است که در حوزه رباتیک، محاسبات اغلب روی لبه پرتگاه انجام می‌شوند و استنتاج را به چالش تبدیل می‌کنند. ربات‌ها باید مقرون‌به‌صرفه باشند، اما بسیاری از برنامه‌ها در حال حاضر از هزینه افزودن GPU کافی برای اجرای استنتاج در قوی‌ترین مدل‌ها پشتیبانی نمی‌کنند.

این مشکل احتمالا قابل‌حل‌ترین مشکل از سه مورد ذکرشده است. انتظار می‌رود که متخصصان رباتیک، مدل‌های زبانی بزرگ را به عنوان نقطه آغاز در نظر بگیرند و از روش‌های تقطیر دانش برای ایجاد مدل‌های کوچک‌تر و متمرکزتر با نیاز کمتر به منابع استفاده کنند.

در کا می‌توان گفت که اگرچه جهان به طور فزاینده‌ای در حال دیجیتالی شدن است، اما ما هنوز در دنیای فیزیکی زندگی می‌کنیم و تعامل حوزه دیجیتال با دنیای فیزیکی، دامنه نامحدودی برای توسعه دارد.

منبع: ایسنا

برچسب ها: چت جی پی تی ، ربات
تبادل نظر
آدرس ایمیل خود را با فرمت مناسب وارد نمایید.