TEHRAN, December 01 - Climbing enthusiast Jim Ewing lost his left foot in the aftermath of a 50-foot fall off a Cayman Islands cliff.
TEHRAN, Young Journalists Club (YJC) -Climbing enthusiast Jim Ewing lost his left foot in the aftermath of a 50-foot fall off a Cayman Islands cliff.
But Ewing is scaling rock walls again with the aid of a robotic ankle and foot he works as well as his former flesh-and-blood version, thanks to a groundbreaking amputation procedure that eliminates the "phantom limb" effect. That's a disorienting side effect that makes it hard for patients to work their prosthetic limbs properly.
This August -- a little more than two years after his amputation -- Ewing successfully tackled the Lotus Flower Tower, a renowned 8,430-foot peak located in the Northwest Territories of Canada.
"When I'm connected to the robotic ankle, I can use it as if it's my very own," said Ewing, 54, of Falmouth, Maine. "It's a very natural transition going from no foot to all of a sudden having my foot back. I don't have to retrain my brain or retrain my muscles to do anything. It's pretty much a one-for-one replacement."
Losing a limb causes many disconcerting effects, as the brain tries to interpret signals from an arm or leg that's no longer there.
One of the oddest might be the fact that not only do people feel as though they have a phantom limb, but that limb's position in their mind often doesn't match the location of their prosthetic replacement.
"They can perceive a foot that is somewhere in space, but oftentimes is disembodied," said lead researcher Dr. Matthew Carty, director of the Lower Extremity Transplant Program at Brigham and Women's Hospital in Boston. "It doesn't map geographically to where their prosthetic foot is. It's kind of floating to the side, or they may feel it's encased in a hard block and they can't move it."
These misleading signals can make it difficult for amputees to learn how to work a prosthetic limb properly.
New surgery erases disconnect with prosthetic limb
In July 2016, Ewing became the first person to undergo an amputation procedure designed to eliminate this disconnect.
Named after him, the Ewing Amputation recreates the normal tug-and-stretch relationship of muscles that occurs during normal movement of legs or arms.
When you move a limb, muscles on one side contract while muscles on the other side stretch, Carty explained. For example, when you lift a foot off the ground and move your ankle around, you'll feel muscles on both sides of your leg moving back and forth.
Researchers have learned that as they work, the muscles are sending constant signals to the brain's proprioceptive sensory system. Proprioception is your ability to know the exact position of your limbs at all times, allowing you to precisely coordinate their movements.
"It transmits information back to our brain where the limb is in space without us having to look at it," Carty said.
Traditional amputation screws up these signals by decoupling the muscles, Carty said. The lack of push-and-pull muscle feedback confuses the brain, creating misleading perceptions of a disembodied phantom limb.
Source: UPI